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Abstract

In this article we address the problem of blood flow simulation in realistic vascular objects.

The anatomical surfaces are extracted by means of Level-Sets methods that accurately

model the complex and varying surfaces of pathological objects such as aneurysms and

stenoses. The surfaces obtained are defined at the sub-pixel level where they intersect the

Cartesian grid of the image domain. It is therefore straightforward to construct embed-

ded boundary representations of these objects on the same grid, for which recent work

has enabled discretization of the Navier-Stokes equations for incompressible fluids. While

most classical techniques require construction of a structured mesh that approximates

the surface in order to extrapolate a 3D finite-element gridding of the whole volume, our

method directly simulates the blood-flow inside the extracted surface without losing any

complicated details and without building additional grids.
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1. Introduction

Computational Fluid Dynamics (CFD) simulations of complex flows in vascular
passages such as cerebral or carotid arteries can provide clinicians with information
needed to evaluate how pathologies form, how they evolve, and ultimately how
they are effectively treated. In order to do this, accurate methods are required to
build the anatomical models, and CFD codes must be available that can run on
anatomical models such as the carotid artery shown in figure 1.

Fig. 1. Volume Rendering of a Carotid artery from a 3D MR dataset

However, methods of surface extraction are limited in their ability to recover the
geometry of complex objects like tubular branching structures in real time. More-
over, it is necessary to convert the surface extracted by image processing techniques
into a computational domain appropriate for the CFD solver, involving the con-
struction of a mesh on the surface and in the 3D domain surrounding it. Valuable
information can be lost during this construction due to limitations of the CFD
solvers with respect to the properties of the surface mesh. It is often the case, for
example, that the surface needs to be smoothed in order to build a finite-element
mesh necessary to some CFD codes. Failing that, irregular surfaces must be approx-
imated by a large number of small mesh elements, pushing the limits of computer
memory. The result in this and other cases is a compromise in the level of accuracy
of the surface extraction method.
Some recent techniques of image processing enable an approximation of the sur-

face of any vascular tree in the patient body to be built using CT or MR images
of the patient enhanced with contrast product. This work is based on an accurate
surface extraction with front propagation techniques based on the Fast-Marching
and Level-Sets methods [1].
In addition, recent techniques in CFD make easy use of these approximate sur-

faces in the generation of computational grids: a higher-order projection method
has been desgined on Chombo, a software framework for applied partial differential
equation (PDE) solvers on irregular domains.
The purpose of this work, therefore, is to transform the result of an accurate

surface extraction method detailed in section 2 into a CFDmesh detailed in section 3
with no loss of information. Using a high-resolution CFD code presented in section 4,
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we accurately compute measures of fluid velocity, pressure and wall shear stress in
realistic arterial geometries.

2. Surface Extraction

Fast-Marching and Level-Sets methods are numerical techniques which can fol-
low the evolution of contours and surfaces that can develop sharp corners, break
apart, and merge together, and are particularly useful for shape recovery of complex
geometries like branching tubular structures [2].
Rather than tracking the movement of a given contour C moving with speed F in

its normal direction −→n according to the evolution equation ∂C

∂t
= F−→n , we consider

the signed distance function φ to C and track its motion with the evolution equation

∂φ

∂t
= F |∇φ|, with F = kI(1− εκ)− ∇kI · −→n , and kI(x) = e−‖∇Ix‖ (1)

This is the Level-Sets method [1]. Therefore since the contour is moved implicitly
by the evolution of the signed distance function, the resulting surface extraction
exhibits good properties including a total adaptability to complex topologies like
branching arterial structures and a sub-pixel accuracy of the surface thanks to the
implicit formulation of the sign distance function. An example is shown in figure 2
When the speed F is strictly positive and a function of the image only, equation 1 re-

Fig. 2. Carotid segmentation with Level-Sets: the propagating front at three successive times.

solves in the stationary case F |∇T | = 1, with F (x) = kI(x) defined in eq (1)where
T is the crossing time of the propagating front. Since Level-Sets are rather slow,
initialization of the segmentation can be done with the Fast-Marching method [1]
that solves Eikonal equation in o(n log(n)) (where n is the number of points in the
image). When coupled [3], these numerical techniques can achieve the highest level
of accuracy in a very short time, compared to other segmentation techniques like
classical active contours that fail to capture complex shapes. These algorithms have
been validated in numerous cases [4], and can be specifically optimized to extract
long and thin tubular objects [5].
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3. Building the CFD grid

In order to simulate the blood-flow inside the carotid that we just segment, many
methods rely on a finite element griding of the 3D domain that is based on re-
meshing appropriately the surface extracted. Re-meshing often discards a lot of the
surface details because it is done with approximation of the surface (like NURBS)
and involves a lot of user-interaction. Other methods that want to keep all the
details end up with quantity of mesh elements (like triangles) that are challenging
both for computers’ memory and commercial CFD softwares.
The embedded boundary method is an approach in which regular cells on a

Cartesian grid are cut by physical boundaries and/or interfaces (see Figure 3).
Higher-order stencils are constructed near boundaries where irregular, or “cut”,
cells occur while discretizations with known accuracy and stability requirements
are employed on the interior regular cells [6,7].
The geometric facts required for numerical methods (normals, centroids, face

areas, and so forth) can each be realized as integrals of monomials over the volume-
of-fluid. There is in general more than one such integral for each geometric datum.
Hence the set of all such integrals constitutes an overdetermined system for the
geometry. We apply Least Squares to this over-determined system, which finesses
some difficult aspects of computational geometry. Furthermore, by using the diver-
gence theorem we are able to replace volume integrals over irregular regions with
trivial computations of one-dimensional integrals over line-segments.
Given a level set description of the EB as above, grid generation proceeds as an

automated process taking a few minutes (see figure 3).
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Fig. 3. From Level-Sets to Embedded Boundary - Left image: the distance function on the

Cartesian grid - Middle image: the different cells, their centers (black disks) and centroids (empty
disks) - Right Image: the Surface and the underlying Cartesian grid for the carotid example.

4. Blood-Flow Simulation

We make use of the Chombo software libraries [8] which provide a framework
for data management, numerical operators and linear solvers needed in an EB
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formulation. We adapt the Chombo framework to incompressible flow by developing
fundamental numerical operators requiring viscous (Dirichlet) boundary conditions.
We model blood flow with the incompressible Navier-Stokes equations which are

a combination of evolution equations, and a constraint due to the incompressibility
condition:

ρut + ρ(u · ∇)u = −∇p+ µs∆u , and ∇ · u = 0. (2)

The formulation of appropriate time-discretization methods is more subtle than that
for evolution equations alone. To address this issue, Chorin [9] introduced projection
methods based on the Hodge decomposition of any vector field into a divergence-
free part and the gradient of a scalar field. Projection methods are fractional step
methods for which an intermediate velocity is computed that does not necessarily
satisfy the incompressibility constraint. This velocity is then corrected so that it
satisfies the constraint. In [10] was introduced a predictor-corrector method based
on Chorin’s ideas. Some of the key advantages of their method are that the advective
terms can be treated using explicit high-resolution finite difference methods for
hyperbolic PDEs, and that the only linear systems to be solved are ones resulting
from standard discretizations of second-order elliptic and parabolic PDEs which
are amenable to solution using fast iterative methods such as multigrid. This leads
to a method that is second-order accurate in space and time. It has a stability
constraint on the time step due only to the CFL condition for the advection terms,
and a robust treatment of underresolved gradients in the Euler limit.
We present in figure 4 results for the flow simulated in the stenotic carotid artery

of figure 1. Fluid velocity and pressure are computed with the flow solver and
visualized on a desktop workstation. Pressure drops (brighter areas) and complex
flow patterns are observed near the arterial bifurcation and beyond the stenosis.

5. Conclusion

Our approach to computing flows in realistic arterial geometries with stenosis
does not modify the object geometry from the imaging, and uses a fast, automated
process for generating an appropriate finite volume grid. We have a direct construc-
tion of the embedded boundary on the Cartesian grid, and thus no loss of infor-
mation nor accuracy. The final flow simulation results are obtained for the realistic
geometry that has been extracted by the segmentation method. Future work will
concern the use of adaptive mesh refinement techniques and parallel implementa-
tion to reduce the computing cost of the CFD simulation, as well as more complex
simulations built on the Chombo library involving fluid-surface interactions and
influence of other materials like plaque and stents.
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Fig. 4. Blood-Flow simulation inside the carotid - Left image: Pressure on the surface; Right image:
iso-surfaces of the longitudinal component of the flow velocity.
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